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Abstract—Computer stereo vision is an important technique
for robotic navigation and other mobile scenarios where depth
perception is needed, but it usually requires two cameras with
a known horizontal displacement. In this paper, we present a
solution for mobile devices with just one camera, which is a first
step towards making computer stereo vision available to a wide
range of devices that are not equipped with stereo cameras. We
have built a prototype using a state-of-the-art mobile phone,
which has to be manually displaced in order to record images
from different lines of sight. Since the displacement between
the two images is not known in advance, it is measured using
the phone’s inertial sensors. We evaluated the accuracy of our
single-camera approach by performing distance calculations to
everyday objects in different indoor and outdoor scenarios, and
compared the results with that of a stereo camera phone. As
a main advantage of a single moving camera is the possibility
to vary its relative position between taking the two pictures,
we investigated the effect of different camera displacements on
the accuracy of distance measurements.

Keywords-Depth perception, single-camera stereo vision, in-
ertial sensing.

I. INTRODUCTION

Visual distance estimation is a fundamental part of human
perception. It is based on several depth cues including the
size and contrast of objects as well as the exploitation of
parallax, which refers to a displacement of the apparent
position of an object viewed from different lines of sight.
This parallax phenomenon is used in binocular or stereo
vision for human depth perception, where the difference in
the views from the left and right eye is analyzed. As stereo
vision is a robust and reliable depth perception technique,
it has been used in robotics and other computer systems
to calculate the distance to objects. In computer stereo
vision systems, two cameras observe a scene from different
locations. The different camera locations result in different
image locations of the objects. The difference in the image
locations is called disparity and the distance between the
two cameras is called baseline. Based on the disparity and
baseline, the distance can be calculated.

However, stereo vision is not constrained to two separate
cameras. Recording two images with a single camera from
different locations results in the same image disparities.
This approach is referred to as single-camera stereo vision.
Compared to traditional stereo vision, the baseline between
the cameras is not fixed but can vary instead. This leads

to a potentially higher distance accuracy, which can be
achieved by increasing the distance between the camera
positions from where the two pictures are taken. Another
obvious advantage of using a single camera are the lower
hardware costs. On the other hand, the single-camera ap-
proach requires a measurement of the camera’s translational
and rotational movements to calculate its relative positions,
which can be achieved with inertial sensors.

In this paper, we present a single-camera stereo vision
system based on a mobile phone with integrated inertial
sensors. The aim of our work was to explore the distance
accuracy in comparison to stereo vision systems using two
cameras. In particular, we wanted to find out whether bigger
baselines lead to more accurate distance measurements or
not. Thus, the contributions of this paper are as follows:
• We have developed a single-camera stereo vision pro-

totype, which will be presented in Section III. The
most challenging parts were the baseline measurement
with inertial sensors as well as the disparity calculation
from image features. The theoretical background on
distance calculation with stereo vision will be given
in Section II.

• Several experiments have been conducted to show
whether bigger baselines actually lead to more accurate
results on the one hand, and how different distances
between camera and object affect the measurement ac-
curacy on the other hand. The results of the experiments
will be discussed in Section IV.

II. DEPTH PERCEPTION WITH STEREO VISION

In this section, stereo vision fundamentals will be de-
scribed, which provide the basis for our single-camera
approach presented in Section III. First, motion parallax and
binocular vision will be explained, which are the two general
principles of stereo vision. Second, the stereo triangulation
technique for calculating the distance to an object will
be explained and the achievable depth resolution will be
discussed. Stereo triangulation is based on the difference of
an object’s position in two images due to a changed line of
sight, which requires to match those image points from two
images at a time that are projections of the same 3D point.
This is referred to as the correspondence problem, and it
will be explained at the end of this section.
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Figure 1. Two images recorded from a laterally displaced camera. The
displacement of the objects provides relative depth information.

A. Motion Parallax and Binocular Vision

Motion parallax basically describes the displacement in
the apparent position of objects viewed from different lines
of sight. The displacement of an object is called disparity,
which is a cue for its distance to the camera. An example of
a motion parallax is shown in Figure 1, where two images
depict a scene recorded from a laterally displaced camera.
The different camera viewing angles to the objects result in
displaced object locations on the images. In this example,
the tree has a bigger disparity and therefore seems to be
closer than the house.

Binocular vision, also known as stereo vision, allows
humans to perceive the environment in three dimensions
as a result of a combination of images from both eyes. In
computer stereo vision the same technique is used, where
two cameras – whose relative positions are known – capture
a scene from two positions [1]. The disparity between
the images is calculated and used for a reconstruction of
the three-dimensional scene. The matching of an object’s
projection on the two images is a great challenge in com-
puter stereo vision systems, and it is referred to as the
correspondence problem [2] described further below.

In stereo vision systems, it is required that the distance
between the two cameras is known. However, as will be
described in Section III, binocular vision can also be used
in a monocular vision system with one camera. Applying a
lateral displacement with a known distance to a camera re-
sults in the same perspective projection and motion parallax
than in a system with two fixed cameras.

B. Stereo Triangulation

A common technique to calculate the distance in a stereo
vision system is called stereo triangulation, which requires
that the two optical axes of the cameras are parallel. As
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Figure 2. Stereo vision setup with two cameras with parallel optical axes.
The cameras have equal focal length f and are laterally displaced by a
baseline b.

shown in Figure 2, the distance of a point P in 3D space is
defined by the intersection of the two rays from the optical
centers C and C ′ through the respective image points p and
p′ on the image planes I and I ′ [3]. The triangulation is
based on similar triangles, for which the ratios

b

Z
=

b− (d+ d′)

Z − f
=

d+ d′

f
(1)

are equal. This leads to the following triangulation formula
to compute the distance Z, where f is the focal length, D
the disparity (D = d+ d′) and b the baseline:

Z =
f · b
D

(2)

The focal length f of a lens is the distance from the lens
to the digital camera sensor when a far away object is in
focus, and it is predefined by the used camera. The baseline
b is defined by the distance between the optical centers of
two displaced cameras. For a constant distance, an increasing
baseline results in a higher accuracy of the system due to
limitations of the camera resolution.

The disparity D is the horizontal displacement of a
stationary object on images which are captured from two
laterally displaced camera positions. The object disparity
from a camera translation is an important cue for depth per-
ception, which is based on the motion parallax phenomenon
described above. In contrast, rotation around the optical
center, which also causes object disparity, doesn’t include
any depth information.



C. Depth Resolution

The depth resolution of a stereo vision system is lim-
ited. An obvious limitation is the camera resolution, which
specifies how many pixels an image consists of. An image
with lower resolution consists of fewer image points, and
therefore changes in the scene may not be seen as well as on
a high-resolution image. The focal length of the camera also
influences the depth resolution as it is directly related to its
field of view, but it is usually fixed. Another limiting factor
is the baseline. As can be seen in Figure 3, an increasing
baseline results in a better depth accuracy, where R denotes
the size of uncertainty for a fixed baseline and different
distances. For single-camera systems with varying baselines,
the depth resolution could theoretically be better than in
traditional stereo vision system.
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A Matlab procedure for a linear rectification of a general unconstrained stereo setup is pro-
vided in the paper by Fusiello et al. [143]. It is assumed that the system is calibrated, that is,
the intrinsic parameters of the cameras are known, as well as parameters of the mutual posi-
tions of the cameras (section 3.6.4). Thus, the procedure takes the two perspective projection
matrices M (3.7) of the cameras and outputs a pair of rectifying projection matrices.

3.4.9 Depth Resolution in Stereo Setups
Figure 3.19 explains the phenomenon of diminishing accuracy of depth measurement with
increasing distance from the camera planes. This is a geometrical limitation since it depends
exclusively on geometrical parameters of a stereo system.

The dependence of the depth accuracy versus camera resolution and distance to the ob-
served scene can be found analysing Figure 3.20. Observing the similarity of triangle !ABC
to !ADF, as well as !AEF to !AHG, we obtain the following relations:

DF
AF

= BC
AC

E F
AF

= G H
AG

.

Let us now introduce new shorter symbols:

AF = b, BC = G H = f, E F = Z , DE = R.

We obtain

r = AG − AC, r = f b
Z

− b f
Z + R

.

Thus, after a simple change

Rfb = r Z (Z + R).

r

f

b

Z R

Figure 3.19 Phenomenon of a limited accuracy of depth measurement with increasing distance from
the cameraFigure 3. The limitations of stereo triangulation for a specific baseline [4].

The depth resolution R can be calculated with the trian-
gulation equation 2 as

R = Z1 − Z2 (3)

Z1 =
f · b
d1

(4)

Z2 =
f · b

d1 + rm
(5)

where d1 is the discretized disparity and rm is the width of
one pixel in metric units. A discretization of the disparity
occurs when the camera chip rasterizes the light rays to form
an image.

When designing a stereo vision system, the camera reso-
lution and baseline have to be chosen properly to meet the
given accuracy requirements.

D. The Correspondence Problem

The correspondence problem is the problem to match
image points from two images which are projections of the
same 3D point. It is the main problem in computer stereo
vision when calculating the disparity for stereo triangulation.
The change in perspective, lighting and image location
as well as object occlusions make the matching process
difficult. There are many different approaches available, an
overview of the techniques and algorithms is given in [3]
and [5].

In general, two correspondence methods can be dis-
tinguished. The first category are direct methods, which
compare the pixel intensity values between the two images
to match similar image regions. They can be fast to compute,
but they much likely lead to matching errors. The reason is
that the pixel intensity depends on a lot of external factors
like lighting conditions, sensor noise and camera resolution,
which makes pixel matching more difficult. The second cat-
egory are indirect methods, which locate distinctive features
in the images. These features are associated with image
properties like edges, corners or other interesting regions.
A main requirement of good features is their repeatability,
which includes invariance against image transformations and
robustness against deformations [6].

For our work, we have used the SURF (Speeded Up
Robust Features) algorithm [7] to detect and describe image
features. The features are scale and rotation-invariant, which
makes them robust against affine image transformations, and
they are fast to compute. Especially on mobile devices,
which have limited computational resources, SURF features
provide an acceptable tradeoff between repeatability and
efficiency [6].

III. SINGLE-CAMERA STEREO VISION PROTOTYPE

Stereo vision systems are usually equipped with two
cameras which are displaced by a fixed baseline. This is
an advantage on the one hand, as the spatial relationship of
the cameras is known and does not have to be measured
during operation, but it is a drawback on the other hand,
as the depth resolution in stereo triangulation is limited by
this baseline. However, there are also systems which use just
one camera, and they are referred to as single-camera stereo
vision systems. Due to the fact that only one camera is used,
the baseline can be varied. Therefore, a single-camera stereo
vision systems may achieve a much higher depth resolution
since it is not tied to a fixed baseline.

There are two different approaches for single-camera
stereo vision: axial and lateral motion stereo. In axial motion
stereo, the camera is moved along the optical axis, which
results in a disparity on the image [8]. The second approach
for single-camera stereo vision is lateral motion stereo,
which is equal to a common stereo vision system. The
camera is displaced laterally which results in the same
motion parallax phenomena than in a normal stereo vision
system, and the distance can be calculated with stereo
triangulation as presented in Section II.

We have implemented the lateral motion stereo approach,
as we were interested in how a mobile single-camera system
performs in comparison to a stereo vision system with two
cameras. In the following, our prototypical implementation,
and especially how the baseline and disparity have been
determined, will be explained.



A. Prototype Implementation

The prototype has been implemented on an iPhone 4
mobile phone with iOS 4.3.3. The used sensors of the mobile
phone were its five-megapixel camera, three-axis gyroscope
and three-axis accelerometer. The prototype processes raw
camera frames in a 32 Bit RGBA (Red Green Blue Alpha)
format and with a resolution of 640 x 480 pixels. The
translational movement of the device is recorded by the
gyroscope and the accelerometer. Based on the acceleration
values in combination with the gyroscope data, the baseline
can be calculated.

The disparity calculation of the object is based on image
features. As mentioned in Section II, we used SURF features
to extract interesting image regions. An implementation
of the SURF algorithm is included in the Open Source
Computer Vision (OpenCV)1 library, which is also available
for the iOS platform. As the SURF algorithm in OpenCV
uses a custom image structure, the image captured from the
camera has to be converted into an OpenCV 8-bit (unsigned)
grayscale image.

Afterwards, features are extracted from the first image
and matched with similar features from the second image.
In the first image however, just the features of a 70x70
pixels region in the middle of the image are considered,
which allows the user to select an object of interest to
which the distance should be calculated. The disparity is
then calculated by measuring the horizontal displacement
of matched features. The overall disparity, which is used in
the stereo triangulation equation, is the median of the five
matched features that are nearest to the center of the first
image. Using the median helps to eliminate outliers due to
incorrect feature matches.

In contrast to stereo vision systems with two cameras,
we calculated the baseline by a double integration over the
acceleration values in x-direction as described in [9]. The
accelerometer output is accessed via the iOS Core Motion
framework2. It tracks the device’s motion using both the
built-in gyroscope and the accelerometer, and can therewith
differentiate between gravity and user acceleration. This
differentiation is necessary, as just the user acceleration
reflects the device movement over time and is used for the
baseline calculation. Using only the accelerometer would
not be sufficient, as it measures the sum of these two
acceleration vectors.

Once the disparity and baseline are known, the distance
can be calculated with the stereo triangulation formula
presented in Section II. First, the feature locations in the
second image have to be corrected to get the real dis-
parity. This is done by multiplying the feature positions
with a transformation matrix. Its rotation and translation

1http://opencv.willowgarage.com
2developer.apple.com/library/IOS/#documentation/CoreMotion/

Reference/CoreMotion Reference/

components are determined by calculating the difference of
the device’s orientations at the two points in time when
the images are recorded. This step is necessary, as the
displacement of objects due to a rotation of the camera
does not provide any depth information. Afterwards, the
disparities are converted from pixel into metric units, and the
distance is finally calculated with the triangulation formula.

IV. EXPERIMENTS

In order to evaluate the accuracy of our proposed single-
camera stereo vision approach, we have conducted several
experiments which are described in this section. We will first
give an overview of the research question and the design
of the experiments. Afterwards, we will present the results
in detail, and conclude the section with a summary and
discussion of our findings.

A. Overview and Setup

The goal of the experiments was to investigate the accu-
racy of the distance estimation of our prototype under real-
world conditions. First, we were interested in how different
distances of objects to the camera affect the accuracy of the
distance estimation. Second, we wanted to find out whether
bigger baselines lead to more accurate distance estimations
or not. On the one hand, the distance accuracy should
become higher with an increasing baseline, which is obvious
from the stereo vision fundamentals presented in Section III.
On the other hand, the baseline is measured with inertial
sensors, which leads to higher measurement errors for longer
baselines.

In order to answer these research questions, we designed
two experiments. In the first experiment, distances to a coffee
maker (indoor) and a parked car (outdoor) have been mea-
sured with our prototype under good lighting conditions. The
measurement have been performed from different distances
(1, 2 and 5m indoors and 2, 5 and 10m outdoors) and
with four different baselines (2.4, 5, 10 and 20cm) at a
time. The prototype has been moved horizontally on a plate
with markings for the four baselines. This should reduce
errors from the inertial sensors, as the prototype could not be
rotated but just moved in one direction. The two images have
been taken manually before and after moving the prototype.
We have performed 10 test runs for each combination of
baseline and distance, which resulted in 240 test runs in
total for the first experiment.

In the second experiment, the same measurements like in
the first experiment have been performed, with the difference
that the prototype device has been moved free-handedly. It
has been grabbed with both hands, and moved horizontally
without holding on – again by using the markings on the
plate which has been placed below. With this second exper-
iment, we wanted to see if our approach also worked for a
free-handed use of the device, and how big the difference in



(a) Coffee Maker - Indoor (b) Car - Outdoor

Figure 4. Mean value and standard deviation of estimated distances in the
first experiment, where the prototype has been moved on a plate.

terms of accuracy was compared to the controlled movement
of the phone in the first experiment.

The results from both experiments have been compared
with that of an LG Optimus 3D (P920) 3 mobile phone which
has a built-in stereo camera. The cameras have a resolution
of five megapixels and a focal length of 4.6mm. The
baseline of the LG smartphone is 2.4cm, which is the reason
for choosing this baseline also for the experiments with our
prototype. The image resolution has been limited to 640x720
pixels, which is the same width than that of our prototype
with 640x480 pixels; the heights can be disregarded as just
the horizontal disparity has been taken into account. The
distance calculations have been performed exactly the same
way as for our prototype presented in Section III, with the
only difference that the fixed baseline of 2.4cm was used.

B. Results of the Experiments

For every baseline and distance specified in the previous
subsection, Figure 4 shows the mean values of the ten test
runs together with their standard deviations. The experiments
also included ten test runs for the LG smartphone, because
even though the baseline was fixed, the image pairs recorded
by the stereo camera of the phone did not result in the same
distance every time. First, the images from the stereo camera
are exported as JPEG files. JPEG compression adds com-
pression artifacts, which may influence the feature matching
and therefore also the disparity calculation. Second, since
the LG smartphone calibrates the exposure settings of the
stereo camera automatically, some areas in the images can
be very bright or dark, which makes the disparity calculation
more difficult. We observed this effect especially in outdoor
scenes, where in some cases the exposure was much higher
for the stereo image pairs from the LG smartphone compared
to the iPhone 4.

With the first experiment, we found out that bigger base-
lines actually increased the accuracy, although the baseline

3http://www.lg.com/uk/mobile-phones/all-lg-phones/
LG-android-mobile-phone-P920.jsp
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Figure 5. Mean value and standard deviation of estimated distances in the
second experiment, where the prototype has been moved free-handedly.

has been measured with inertial sensors. Especially for the
indoor scenario, a decrease of the standard deviation for
bigger baselines can be clearly seen in Figure 4. Second,
we can also see from the results that larger distances
between camera and object lead to less accurate results.
The reason is the decreasing disparity with an increasing
distance between object and camera, which is obvious from
the descriptions in Section III-A. Although the results of the
outdoor scenario are not that obvious, the general findings
concerning variations in baseline and distance are the same
like in the first scenario. However, a main difference was that
the LG smartphone performed worst in the outdoor scenario,
which was caused by the image quality and exposure of the
stereo camera explained before. This result also shows that
small variations in the disparity may lead to huge errors if
the baseline is small.

The results from the second experiment, where the proto-
type device was moved free-handedly, show that the standard
deviation became bigger compared to the first experiment.
The reason for that were unintentional rotations of the
device. They influenced the measured baselines on the one
hand, which have shown to become worse compared to a
displacement on a plate, and the disparity calculation on the
other hand. In both experiments, the standard deviation is
the lowest for a large baseline of 20cm compared to smaller
baselines, and it is the highest for long distances of 5m or
10m compared to shorter distances.

C. Summary and Discussion

To sum up, the experiments have shown that the dis-
tance accuracy becomes better with an increasing baseline,
although it was not predefined as it is the case in stereo
vision systems with two cameras. Instead, the baseline has
been measured with built-in inertial sensors of our proto-
type. Since other factors besides the baseline influence the
distance accuracy as well, especially unintentional rotations
of the devices when moving it from one position to the other
as well as bad lighting conditions which may influence the



feature matching, a baseline of 20cm did not always lead
to the best results. However, longer baselines improved the
distance average and standard deviation in most cases.

For long distances, both the LG smartphone as well as our
prototype were unable to accurately determine the distance
to the objects. A main reason for that is the discretization
of the disparity, which occurs due to a low horizontal
image resolution of 640 pixels. Another important factor
is the baseline, which is very short in the case of the LG
smartphone and inaccurate in the case of our prototype
where it has been measured with inertial sensors. For shorter
distances, both systems perform better.

A surprising finding was that results of the LG smartphone
were worse in our experiments, which we trace back to the
lower image quality due to JPEG compression and exposure
settings of the stereo camera. The compression artifacts
from the JPEG export and the image exposure, where some
regions in the image are lightened or darkened, influence the
disparity calculation and furthermore the calculated distance.
As our prototype device processed raw camera frames, no
compression artifacts occurred.

V. RELATED WORK

Single-camera vision systems which use geometric con-
straints are presented in [10] and [11]. By exploiting certain
characteristics of the environment and the objects of interest,
the distances to these objects can be estimated. In contrast to
our approach, those systems are not applicable in unknown
environments, but they are rather designed for specific
scenarios.

In [12], a glass plane, which is mounted in front a camera,
is used to calculate the distance to objects. Changing the
pose of the planar plane changes the image position of the
projected object because of the light ray’s incident angle,
the plane’s thickness and refraction index. This leads to a
parallax effect which is needed for stereo vision, even though
the camera is not translated.

The idea of actually translating a single camera has
already been presented in [13] and [14]. In both systems,
the camera is displaced to get two images from different
positions, which allows single-camera stereo triangulation
as proposed in this paper. The main difference to our
approach though is that the camera is fixated and translated
mechanically.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our implementation of a single-
camera stereo vision system using a state-of-the-art mobile
phone which is able to measure the distance to everyday
objects. It can be used with mobile phones which are
equipped with just one camera by determining the distance
between the camera positions, from where the two pictures
are taken, with inertial sensors. We conducted indoor and
outdoor experiments with different distances and baselines.

The results showed that an increasing baseline leads to a
higher distance accuracy in most cases, but we also observed
that lighting conditions and unintentional device rotations
influenced the results.
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