An Android Toolkit for Supporting
Field Studies on Mobile Devices

Clemens Holzmann

University of Applied Sciences
Upper Austria

Department of Mobility & Energy
Softwarepark 11, 4232
Hagenberg, Austria
clemens.holzmann@fh-
hagenberg.at

Dustin Steiner

University of Applied Sciences
Upper Austria

Department of Mobility & Energy
Softwarepark 11, 4232
Hagenberg, Austria
dustin.steiner@fh-hagenberg.at

Andreas Riegler

University of Applied Sciences
Upper Austria

Department of Mobility & Energy
Softwarepark 11, 4232
Hagenberg, Austria
andreas.riegler@fh-
hagenberg.at

Christian Grossauer

University of Applied Sciences
Upper Austria

Department of Mobility & Energy
Softwarepark 11, 4232
Hagenberg, Austria
christian.grossauer@fh-
hagenberg.at

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).

MUM 2017, November 26-29, 2017, Stuttgart, Germany
ACM 978-1-4503-5378-6/17/11.
https://doi.org/10.1145/3152832.3157814

Abstract

Evaluating mobile user interfaces in the field is a time-
consuming and cumbersome task. In order to figure out
how users interact with mobile apps or devices over an
extended period of time, an automated logging of device
usage and context information is necessary. In this paper,
we present an Android app called automate toolkit for log-
ging such data across arbitrary apps in a convenient and
customizable way. It allows to trace usage information like
visited screens and performed gestures as well as informa-
tion about the context of use like device orientation and light
conditions. The data is stored on the device for further anal-
ysis with statistical software. We made the toolkit available
as open source software in order to support developers,
designers and researchers in conducting field studies on
Android devices.

Author Keywords
Field study; usability evaluation; software toolkit; Android

app.

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

https://doi.org/10.1145/3152832.3157814

Introduction

Conducting user tests with the aim to improve the usability
of mobile applications is a critical competitive factor in this
fast-moving market. Especially the evaluation of prototypes
can show valuable measures about the quality of mobile
applications, which helps designers and developers in find-
ing possible improvements or errors that should be fixed.
Users are observed how they use a specific application, in
order to calculate usability metrics such as the percentage
of successfully executed tasks, the time required to per-
form certain tasks or the frequency of errors, such as those
caused by wrong entries or navigation problems.

In addition to the necessary expertise, primarily technical
obstacles such as the heterogeneity of mobile platforms
and the high resource requirements (time required, num-
ber of subjects, extensive infrastructure, etc.) are reasons
why usability testing of mobile applications can be found
mostly in large companies. Last but not least, it is the cur-
rent lack of techniques and methods on mobile platforms
which avoids a flexible and efficient way of testing in the
field under real-world conditions. Furthermore, commercial
evaluation tools only provide insufficient information about
usability as they tend to only consider commercial key fig-
ures regarding user loyalty, purchases or demographics.

We present a novel way to automatically collect relevant
usability-related data of mobile applications that is able to
log all user interactions as well as their context of use dur-
ing the entire lifecycle of the application unter test. As a ma-
jor improvement to existing frameworks, our toolkit can be
used without changing the application source code, which
makes it more flexible and scalable. With the logged data,
our toolkit is able to detect issues such as unused functions
and navigational problems under certain contextual circum-
stances.

User Interaction

Accessibility Event

EEEEEN > automate

i

csv

B

Figure 1: A simple overview of the automate toolkit.

The introduced toolkit for Android is a logging framework
which allows to track mobile device usage and context in-
formation across arbitrary Android apps in a convenient
and customizable way. A variety of different kinds of data
can be tracked, like e.g. user interactions on widgets, in-
teraction types (tap, scale, fling etc.), device information
(device type, carrier name, OS information etc.) and also
some context information (language, current location etc.).
The app can be used for starting and stopping the tracking
process, changing the settings and triggering the file export.
The collected data will be solely stored locally in CSV files
which can be accessed using the built in export function.

In order to collect and log the usage data, the users just
have to install the Android app on their device and grant
rights to run as an accessibility service. The data logged
by the app will be stored locally on the device in comma-
separated values (CSV) files. Figure 1 shows this process.

Related Work

Identifying interactions of users when they open an app on
their mobile device is a key issue in mobile usability analy-
sis. Usability evaluation is an essential aspect for applica-
tion development. However, in the mobile domain, collecting
the relevant data is different from traditional desktop envi-
ronments. Moreover, evaluating mobile user interfaces is
done in a platform-specific way. [2]

In the following, several projects that contribute to the work
within this paper are described and related to our approach.

In [4], the authors also used Android’s accessibility service
to retrieve data from the device, although their approach
focuses on visual data (screenshots) rather than on inter-
action data. Each screenshot is analyzed based on a set
of metrics related to the balance and density of elements,
used colors, typography and consistency.

Ma et al. [3] propose a toolkit for automatically capturing
user interactions in mobile applications. The collected data
is sent to a remote server for either automated or manual
usability analysis. However, access to the application’s
source code is needed, as the toolkit has to be integrated
into the app in order to capture user interactions and upload
them to the remote server.

Balagtas-Fernandez et al. [1] propose an Android-based
logging framework. It should simplify usability evaluations
on mobile devices by collecting a variety of usability-related
metrics. The logging framework must also be included into
the target app’s source code as the proposed approach
involves a manual coding of logging calls in the application.

AWARE' is an Android framework for the purpose of instru-
menting, inferring, logging and sharing mobile context infor-

Thttp://www.awareframework.com

mation. The main purpose of the AWARE framework is to
collect data from a series of sensors on the mobile device
and infer context information from them. The framework
provides plugins to detect contexts such as conversations
and ambient noise. The main difference to our proposed
toolkit is that AWARE focuses on presenting and explaining
context information, while our toolkit emphasizes on the log-
ging of interactions such as opened apps, visited pages and
number of interactions per page.

There are also commercial products such as Flurry Ana-
lytics? and Localytics®. Such commercial frameworks in-
tend to get a deep audience insight. They provide statistics
based on metrics like average active users per day, new
users per week or user loyalty. The framework code must
be integrated with the existing target application. The de-
velopers are responsible for using the framework’s code
snippets at the right place in their applications.

The Automate Toolkit

Our toolkit tracks data by acting as an accessibility ser-
vice and extracting the needed information from incoming
accessibility events. The idea behind the toolkit is to help
researchers or mobile app developers to understand how
users are interacting with the app. This is possible without
any modifications of the source code (e.g. by adding log-
ging code) by using Android’s accessibility service. The
accessibility features have to be activated manually by
the user. This ensured that accessibility events are only
recorded with the knowledge of the users.

The automate toolkit can easily be configured through the
automate app. This app displays the current status of the
tracking process and can be used to activate or deactivate

2https://y.flurry.com
3https://www.localytics.com

http://www.awareframework.com
https://y.flurry.com
https://www.localytics.com

Tracked Data:
App Usage Data
* Visited pages
("screens" within an
app)

* Dwell times (per page)
* Number of interactions

(per page)
« Device orientation

Interaction Data
» Type of interaction
(touch, scroll, long
touch)
* Interaction target

Network Data
* Network type

* Network subtype
* Roaming status

Device Data
» Device description

+ Country of origin
» Language

* Network operator
» Operating system
» Screen resolution

Battery Data
 Battery level

» Charging status
(charging/discharg-
ing)

» Temperature

» Voltage

Context Data
« Light condition

Orientation Data
« Device orientation

the tracking of certain types of data (e.g. number of inter-
actions, used apps, light sensor data, etc.). Since not all
recorded data might be needed by the app developers, cer-
tain data types can be ignored to be captured.

The automate toolkit is capable of tracking mobile device
usage and context information. Which kind of data is tracked
can be customized in the toolkit app. All data that is recorded
by automate is shown in the sidebar of this page.

Furthermore, the system architecture allows for an easy
extension of functionalities. The main components are re-
sponsible for starting/stopping the tracking process, receiv-
ing accessibility events, extracting the necessary data and
storing it locally in CSV files. The processing of the data is
handled by so called managers. Each manager handles a
certain kind of related data (e.g. the device info manager
handles the tracking of the set language and the country of
origin).

Accessibility conformant apps are sending accessibility
events that are triggered by user interactions. The auto-
mate toolkit is listening to these events and distributes them
across the registered managers. If data like the GPS loca-
tion or the surrounding noise should be recorded as well, a
new manager can easily be added. This process is visual-
ized in Figure 2.

Figure 3 shows the architecture of the automate toolkit,
which is split into five repositories, in more detail.

Managers

Managers are used to gather data (e.g. device or interac-
tion information etc.) and convert them into different kinds
of structured data that can be analysed later. In order to get
access to the data, a manager or a couple of them have a
corresponding file export handler, which will create struc-

Accessibility
automate Service
. o
QJ @ [
gl gl @ -
9
5 5 2 /| €
> > o ’ o
c c 2 Vi p— w
2 o 3 P >
® [=
2l 5| ¢ 0| 3
Csv 3 21 S ,’ 72
N £ z . 730%4 g
Listener | ¢ -~ 2
=== Kernel -

<<App4>>

<<App3>>

<<App2>>

A
A
pog
o
o
v
\

Figure 2: The workflow of collecting usability data using the
automate toolkit.

autamate Bundle

5
=
H
9
T
H

1) LoggingClientlavaCore

Figure 3: Components of the automate toolkit.

N T .4 88%M 14:55

< automate

tured CSV files from the internal data representation. The
following sections go into the details of the managers that
are already included in the automate toolkit, including infor-
mation about the gathered data and its structure. All CSV
files have a number of general columns (deviceld, ses-
sionld, sequenceNr, projectld and appVersion), which are
described in the following.

App Sequence Manager Listens for events of app screen
visit changes and app interactions (clicks, scrolls etc.), and
creates a structured XML document out of one session. A

Widget Interaction Manager Collects the different in-
teraction events for the current screen. A screen is usually
a view like the Android activity. Interactions are character-
ized by the interaction type (click, scroll, long click, context
click, selected), class name and text, as well as a content
description if available. Additional information are the time
when the interaction occurred as well as the screen bounds
of the widget that was interacted on. Due to restrictions on

off @ Android, some data may be missing.
B

o
N

session starts when the screen is turned on and the device

automate wants permission to:

e Monitor your actions

Receive notifications when
you're interacting with an app

Retrieve window content
Inspect the content of a
window you're interacting with

Turn on Explore by Touch
Touched items will be spoken
aloud and the screen can be
explored using gestures.

Observe text you type

This includes personal data
such as credit card numbers
and passwords.

CANCEL OK

Figure 4: Accessibility service
permission request dialog.

returns from sleep mode, and it lasts until the device re-
turns to sleep mode again (which usually means the display
is off again) or when the device is turned off completely.

Listing 1: XML structure of an app session.

<session>
<appUsage packageName="..." name="..."
startTime="...">
<state name="..." className="..."
duration="..." interactionCount="..."
orientation="..."/>
</appUsage>
</session>

Listing 1 shows the basic XML structure of an app ses-

sion created by the App Sequence Manager. Every time

an app is opened, there is an appUsage tag with the pack-
ageName of its package and the startTime as a timestamp.
Inside every appUsage there is a list of state tags which
stand for a change in the view (usually and Android activ-
ity). They include the name and className of the view if
returned by the Android accessibility environment as well as
the duration, device orientation and interactionCount in that
state.

Network Info Manager This manager waits for changes
to the network connection and updates the information ac-
cordingly. The relevant data is the network type and sub-
type that Android reports as well as a flag if the network
connection is roaming or not.

Device Info Manager This manager collects the basic
device information that rarely changes, like device name
and carrier, OS version, resolution and locale.

Battery Info Manager Whenever the Android battery sys-
tem manager reports changes to the battery status, this
manager compares and updates the stored data.

Light Condition Manager This manager records changes
to the classification of the light condition based on an article
by R. Soneira*.

Orientation Change Manager This manager stores the
amount of time the device was in one of the possible screen
orientations.

“http://www.displaymate.com/Smartphone_Brightness_
ShootOut_1.htm

http://www.displaymate.com/Smartphone_Brightness_ShootOut_1.htm
http://www.displaymate.com/Smartphone_Brightness_ShootOut_1.htm

<> N T .a192%Mm 10:55
Status: running sToP &
App Sequence Manager .
Widget Interaction Manager .
Network Info Manager .
Battery Info Manager .
Light Condition Manager
Orientation Change Manager .

Device Info Manager

Device id: 63acb00

Figure 5: Settings screen of the
automate application.

automate Kernel is running 10:53
This means we're collecting data about app usa..

STOP AUTOMATE

Figure 6: Notification view while
the automate framework is
tracking data in the background.

Using the Toolkit

The automate toolkit has been published as open source
project under the GNU General Public License (GPL) ver-
sion 3% (or later). It is hosted on GitHub® and contains ev-
erything needed for tracking mobile device usage and con-
text information on Android phones. The automate toolkit
app, available via Google Play’, provides a convenient and
customizable way to track the usage of arbitrary applica-
tions on Android.

In order to use the toolkit, the following steps are involved:

1. Install the APK file from Google Play.

2. Enable the accessibility service when the app is
started for the first time. The accessibility service
option has to be activated in the Android settings to
allow the automate service to receive accessibility
events. Figure 4 shows the permission dialog that
must be accepted in order to let the automate frame-
work track the device usage data. After the permis-
sions are granted, the tracking starts automatically
and can be modified in the tracking settings.

3. Modify settings, such as enabling and disabling
the various managers. Figure 5 shows the settings
screen where it can be customized what types of data
should be tracked. On the bottom, the individual de-
vice ID is displayed. Each manager can be enabled
and disabled at any time. The whole tracking process
can also be stopped/resumed anytime by pressing
the start/stop button of the top bar. Additionally, if the

Shitps://www.gnu.org/licenses/gpl.html

6http://mint-hagenberg.github.io/automate-documentation/

"https://play.google.com/store/apps/details?id=at.fhhagenberg.
mint.automate.accessibilityrunner

tracking is in process, the notification bar shows quick
access settings as displayed in Figure 6.

4. Interact with the device When the tracking is run-
ning, automate automatically collects the device us-
age and context data in the background, depending
on the chosen configuration.

5. View tracked data The tracked data can be exported
as a ZIP archive of CSV files. Depending on the size
of the data, the export process can take some time.
The ZIP archive only contains tracked data since the
last file export (or since the initial start).

Conclusions

We presented a toolkit for automating the logging of mobile
device usage and context information on Android, which
we consider especially useful for field studies. It captures
data related to user interactions as well as their context of
use, works across arbitrary apps and does not require any
instrumentation of the application source code. The toolkit
is available as open source software for Android.

Acknowledgements

The research presented has been conducted within the
Austrian project “AUToMAte - Automatic Usability Testing
of Mobile Applications” funded by the Austrian Research
Promotion Agency (FFG) under contract number 839094.

REFERENCES
1. Florence Balagtas-Fernandez and Heinrich Hussmann.
2009. A Methodology and Framework to Simplify
Usability Analysis of Mobile Applications. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (ASE
'09). IEEE Computer Society, Washington, DC, USA,

https://www.gnu.org/licenses/gpl.html
http://mint-hagenberg.github.io/automate-documentation/
https://play.google.com/store/apps/details?id=at.fhhagenberg.mint.automate.accessibilityrunner
https://play.google.com/store/apps/details?id=at.fhhagenberg.mint.automate.accessibilityrunner

520-524. DOI:
http://dx.doi.org/10.1109/ASE.2009.12

. Florian Lettner, Christian Grossauer, and Clemens
Holzmann. 2014. Mobile Interaction Analysis: Towards
a Novel Concept for Interaction Sequence Mining. In
Proceedings of the 16th International Conference on
Human-computer Interaction with Mobile Devices anxd
Services (MobileHCI °14). ACM, New York, NY, USA,
359-368. DOI:
http://dx.doi.org/10.1145/2628363.2628384

. Xiaoxiao Ma, Bo Yan, Guanling Chen, Chunhui Zhang,
Ke Huang, Jill Drury, and Linzhang Wang. 2013.

Design and Implementation of a Toolkit for Usability
Testing of Mobile Apps. Mob. Netw. Appl. 18, 1 (Feb.
2013), 81—97.DOI:
http://dx.doi.org/10.1007/511036-012-0421-2

. Andreas Riegler and Clemens Holzmann. 2015.

UI-CAT: Calculating User Interface Complexity Metrics
for Mobile Applications. In Proceedings of the 14th
International Conference on Mobile and Ubiquitous
Multimedia (MUM ’15). ACM, New York, NY, USA,
390-394. DOI:
http://dx.doi.org/10.1145/2836041.2841214

http://dx.doi.org/10.1109/ASE.2009.12
http://dx.doi.org/10.1145/2628363.2628384
http://dx.doi.org/10.1007/s11036-012-0421-z
http://dx.doi.org/10.1145/2836041.2841214

	Introduction
	Related Work
	The Automate Toolkit
	Managers
	Using the Toolkit

	Conclusions
	Acknowledgements
	REFERENCES

